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It Is critical to measure the laser absorption

 The absorbed laser light is the dominant energy source that induces vapor cavity formation
during laser melting process in additive manufacturing

 Direct measurement

 collection of reflected light via an integrating sphere which are difficult and expensive

« Modeling methods

« Empirical absorptivity model for conduction mode melt pools based on the width of melt

pool using Rosenthal equation ,
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Causal relationship between melt pool geometry and absorption
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The Spearman correlation coefficient for cavity depth, area, and
width (defined in inset) versus laser power for stationary laser
melting of a bare Ti-6Al-4V plate.

Simonds, B., et al. (2021). The causal relationship between melt pool geometry
and energy absorption measured in real time during laser-based manufacturing.
Applied Materials Today, 23, 101049.




In situ laser absorptivity measurement

Frame 171 of 250.
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Schematic of the high-speed synchrotron imaging and laser

absorption setup at APS Advanced Photon Source. A synchrotron image cross-section of the melting
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Frame 80 of 230.
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Dataset

« Training and validation datasets consist spot welding Ti64 data from 4 laser
powers: 119W, 125W, 151W, and 189W

 In total, we have 926 images, and we split the data 80% for training 20% for
validation

* For test dataset, we hold out another entire spot weld data of 226 frames

relative_absorption
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Data preprocessing and augmentation

Divide each frame by the first frame to
remove background noise, then normalize
to [0,255]

First cropped into size 300 x 300 pixels with
the vapor cavity roughly in the center of
each image

To feed images into pretrained models,
Images are first resized into 256 x 256,
then center cropped into 224 x 224

To improve model’s generalizability, data
augmentation is essential in deep learning
tasks

 Random rotation by 7 degree
« Random horizontal flip

Raw image

Processed image




ConvNet Models
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Model training setup using in-domain dataset

Modifications made for this regression task:
« Stack each x-ray images 3 times to simulate an RGB images

« Output size of fully connected layer
 Loss function MAE

Training setup

model #parameters batch size initial Ir optimizer weight decay

Resnet50 23,510,081 128 1e-3 AdamW 0.05

ConvNext_tiny 27814,273 16 3e-5 AdamWw 0.05




Training and validation loss

10
a . b :
retrained ResNet-50 Unpretrained ResNet-50
140 — train loss 140 — train loss Model if pretrained train loss val loss test loss
——— validation loss ~——— validation loss
220 1207 ResNet50 pretrained=True 0.2139 1.4044 45335 @
100 4 100 A .
" " pretrained=False 0.4583 1.2890 8.1304
§ 80 - § 80
uw C ConvNexXt pretrained=True 0.2129 1.3232 5.9008
= 60+ = 60
pretrained=False 4.4071 6.9980 22.0075
40 + 404
204 20 ‘*lv
0 . 0 I Y
' ' " Epoch ' ' ' ' Epoch
” Pretrained ConvNeXt-t 3? Unpretrained ConvNeXt-t .BOth pretralned resnet-5o and ConVNeXt-t
— train loss — train loss are pertained on the 1000-class ImageNet

validation loss validation loss

254 25

classification dataset

N
o
L

20 |

*Loss curves are decreasing more smoothly

= 1 in both pretrained models, which also
% o " \ eventually lead to a lower loss -> good
| transferability to unrelated dataset

<
(=]




Model performance on test data H
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CAM for visualizing where deep learning networks pay attention

Class activation maps (CAM) are a simple technique to get the discriminative image regions used by a
ConvNet to identify a specific class in the image. In other words, a class activation map (CAM) lets us
see which regions in the image were relevant to this class.
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Future Work: 15

Two stage absorptivity prediction
Motivation

« Detter understanding of the correlation between features and absorptivity
* Robust and accurate image segmentation
Current keyhole segmentation pipeline uses OpenCV package

Limitations
* Requires manual parameter tunning at multiple steps

« Accurate performance on deep keyholes but struggles to
differentiate shallow keyholes with background noise

« Shallow keyhole tends to be considered as background noise
« At the end the code pick up the largest object as the keyhole

Pyeon, J ., et al. (2021). Time-Resolved Geometric
Feature Tracking Elucidates Laser-Induced Keyhole




16

Semantic image segmentation using deep learning methods

* Image Segmentation Models

U net + Resnet/MobileNet/ConvNext

Deeplab +Resnet/MobileNet
/ConvNext

 Regression Models

LR/Boosting/Bagging models

« Dataset:

Both moving laser and stationary
laser images

Balance the amount of samples with
deep keyhole and shallow keyhole

Table2 The performance (IoU) of all six semantic segmentation
models

Semantic segmentation models Intersection
over Union
(ToU)
FCN (Model 1) 0.785+0.127
U net (Model ii) 0.628 +0.102
U net+ MobileNet (Model iii) 0.929 +0.003
U net+ ResNet50 (Model iv) 0.902 +0.013
Deeplab v3 (Model v) 0.93 +0.008
Deeplab + MobileNet (Model vi) 0.936+0.01

Zhang, J ., et al. (2022). Image segmentation for defect analysis in laser
powder bed fusion: Deep data mining of X-ray photography from recent
literature. IMMI, 11(3), 418-432.
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Raw images

Ground truth Table 1 X-ray images obtained from the melting processes of Ti64

and Al7A77 under various processing parameters [12, 13]

Movies Material Power (W) Scan With or Num-

FCN
speed without ber of
(mm/s)  powder images
U net .
S1 Ti-6Al-4V 382 500 Y 126
S2 Ti-6Al14V 382 325 Y 116
U net + MobileNet S3 Ti-6A1-4V 382 475 N 126
S4 Al7TATT 500 600 N 81
' S5 Al7ATT 500 600 Y 78
Unet ¥ ResNet30 S6  AITA77 500 800 N 57
S7 Al7TATT 500 1000 Y 44

Deeplab V3

Deeplab + MobileNet

Illustration of the semantic segmentation results on the X-ray predicted results from the six semantic segmentation models. The U
, from movies S1-S7 [12, 13]. The first two rows are the raw net +MobileNet model and the Deeplab+ MobileNet model perform
image and the ground truth. The remaining rows show the best, whereas the U net mode predicts least accurately among all
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Summary

* Developed a pipeline to predict laser absorptivity for
Ti64 given spot welding keyhole images

 Pretrained ConvNet models achieves lower MAE on
the in-domain keyhole dataset

* Proposed a two-stage pipeline that involves a robust
Image segment process and a regression task
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